

FIRST-ORDER LOGIC

Faculty of DS & AI
Autumn semester, 2025

Trong-Nghia Nguyen

Content

- Limitations of propositional logic
- First-Order Logic

Limitations of propositional logic

- Limited expressive power
- Cannot fully describe the world of objects, their properties, and the relationships between them

Example:

- 1. Nam is a student of National Economics University.
- 2. All students of National Economics University study "Data science."
- 3. Since Nam is a student of National Economics University, Nam studies "Data science".

In propositional logic, (3) cannot be inferred from (1) and (2).

FOL / Predicate logic

- FOL is an extension of propositional logic.
- FOL are statements that contain variables.
 - **NEU Student (x):** *x is a student of NEU*
 - NEU Student (Male): Nam is a student of NEU
 - Studies DataScience (x): x studies Data Science
 - Studies DataScience (Male): Nam studies Data Science
 - \forall x: NEU _Student(x) \rightarrow Studies _ DataScience (x): All students of NEU study Data Science
 - In predicate logic, we can prove that:

```
\{ \underbrace{NEU\_Student\ (Male)}, \ \forall x : NEU\_Student(x) \rightarrow \underbrace{Studies\_DataScience\ (x)} \} \rightarrow * \underbrace{Studies\_DataScience\ (Male)}
```

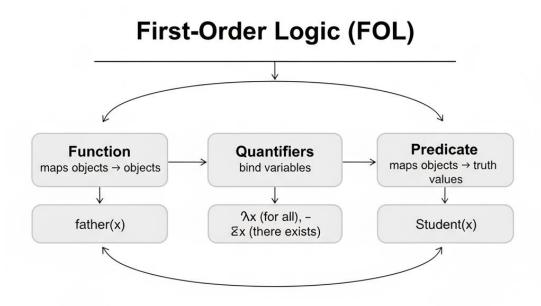
FOL / Predicate logic

Aspect	Propositional Logic (PL)	First-Order Logic (FOL)
Basic Unit	Proposition (a statement that is either true or false)	Predicate (expresses a property or relation among objects)
Structure	No variables or quantifiers	Includes variables (x, y,) and quantifiers (\forall, \exists)
Domain of Discourse	Does not refer to individual objects	Refers explicitly to objects within a domain
Representation Power	Limited – can only express facts as true/false	More expressive – can describe properties, relationships, and rules
Quantification	Not supported	Supported through universal (\forall) and existential (\exists) quantifiers
Example	"If it rains, the road is wet." → Rain → Wet	"If it rains, every road becomes wet." → $\forall x [Rain(x) \to Wet(x)]$
Knowledge Level	Deals with overall facts or statements	Deals with internal structure of facts and objects
Inference	Works with whole propositions only	Allows reasoning about individuals and their relations
Applications	Boolean circuits, simple rule-based systems	Knowledge representation, semantic web, reasoning in Al
Expressiveness	Lower	Higher (PL ⊂ FOL)

Syntax

- Constants: represent specific objects in a particular domain
 - o a, b, c, Mai, Nam, John,...
- Variables: represent general or unspecified objects.
 - *X,Y,Z,U,V,W ,...*
- Functions: represent transformations or mappings between objects.
 - best_friend (x), father(x), distance(x,y), ...
- Predicates: represent relationships between objects or properties of objects
 - friend(x,y), father(x,y), love(x,y), good(x),...
- Quantifiers:
 - Universal quantifier (∀): for all
 - Existential quantifier (∃): there exists

Syntax



Example: $Vx [Student(x) \rightarrow Smart(father(x))]$

- **Functions** map objects to other objects (e.g., father(x))
- **Quantifiers** (∀, ∃) bind variables to express universal or existential statements.
- Predicates map objects to truth values (e.g., Student(x)).

These components work together to represent logical relationships, as shown in the example:

 $\forall x [Student(x) \rightarrow Smart(father(x))], meaning "For all x, if x is a student, then x's father is smart."$

Quantum Logic "For All"

- ∀ (variable 1 , variable 2 ,...,variable n): proposition>
- For example:
 - An is everyone's friend
 - ∀x: friend(An,x)
 - All pet owners love animals
 - $\forall x, \forall y: rear(x,y) \land animal(y) \rightarrow love_animal(x)$
 - All students of FDA are hardworking
 - ∀x: FDA_student(x)→hardworking(x)

Quantum Logic "For All"

- The proposition (∀x:P) is true if and only if P is true for every object in the domain
 of discourse
- Examples:
 - "An is a friend of everyone" is true if and only if:
 - friend(An, Nam) ∧ friend (An, Mai) ∧ friend(An, Son)
 - All students of FDA are hardworking when:
 - FDA_student(Van)→hardworking(Van) ^ FDA_student(Hung)→hardworking(Hung) ^ FDA_student(Binh)→hardworking(Binh)

Quantum Logic "Existence"

- The proposition (∃x :P) is true if and only if P is true for at least one object in the domain of discourse
- Examples:
 - There is a person who is An's friend.
 - *∃x: friend(An,x)*
 - There is a person who raises an animal but does not love animals.
 - ∃x,∃y: rear(x,y) ^ animal(y) ^ ¬love_animal(x)
 - There is a student of FDA and hardworking
 - ∃x: FDA_student(x) ^ hardworking(x)
 - There is a student who studies all subjects in Al.
 - ∃x, ∀y: student(x) ^ learn(x,y) ^ Al_subjects(y)

Quantum Logic "Existence"

- Examples:
 - An is a friend of at least one person when
 - friend(An, Nam) v friend (An, Mai) v friend(An, Son)
 - At least one FDA student is hardworking when:
 - FDA_student(Van)→hardworking(Van) V FDA_student(Hung)→hardworking(Hung) V FDA_student(Binh)→hardworking(Binh)

Properties of quantum logic

- Permutation
 - $\bigcirc \quad (\forall x \ \forall y) \equiv (\forall y \ \forall x)$
 - $\circ \quad (\exists x \ \exists y) \equiv (\exists y \ \exists x)$
 - However, (∃x ∀y) is not equivalent to (∀x ∃y)
 - ∃x ∀y Know(x,y): there exists a person who knows all fields
 - Vx ∃y Know(x,y): there exists a field that everyone knows
- Put quantizations into each predicate
 - $\bigcirc \quad \forall x ((G(x) \land H(x)) \equiv (\forall x G(x)) \land (\forall x H(x))$
 - $\bigcirc \exists x ((G(x) \lor H(x)) \equiv (\exists x G(x)) \lor (\exists x H(x))$
- Eliminate ∀
 - $\bigcirc \quad \forall x \ G(x) \equiv G(x)$

Properties of quantum logic

- Rename variable
 - $\bigcirc \quad \forall x \ G(x) \equiv \ \forall y \ G(y)$
 - $\bigcirc \exists x \ G(x) \equiv \exists y \ G(y)$
- Remove ¬
 - $\bigcirc \neg (\forall x \ G(x)) \equiv \exists x \ (\neg G(x))$
 - $\bigcirc \neg (\exists x \ G(x)) \equiv \forall x \ (\neg G(x))$
- Consequence: each quantum (\forall,\exists) can be represented by the other quantum
 - $[\forall x \ friend(An,x)] \equiv [\neg \exists x \ \neg friend(An,x)]$

An is a friend of everyone, which is logically equivalent to saying that there exists no one who is not An's friend

○ $[\exists x \ friend(An,x)] \equiv [\neg \forall x \ \neg friend(An,x)]$

At least one person is friends with An — that is, not everyone isn't friends with An

Proving in FOL

- Similar to propositional logic, value assignments are also used
- Proof method by resolution rule
 - Assume that the conclusion is false.
 - Convert the formulas into conjunctive normal form (CNF) and separate them into individual clauses.
 - Resolution: find two clauses to resolve until a contradiction is reached
 - Clause i contains *G*(*x*, ...)
 - Clause j contains ¬G(A, ...)
 - \circ By applying the substitution [x | A], the two clauses i and j are unified, and G is eliminated
- Mechanisms for selecting pairs of clauses for resolution:
 - Rigid exhaustive search
 - Flexible search

Proving in FOL

Example 1

- Given the knowledge base (premises):
- 1. Anyone who deceives others is considered a cheater
- 2. Whether intentionally or unintentionally, if anyone ever agree with someone to deceive others, you will be considered a cheater.
- 3. Because of being timid, there may be people who, in certain circumstances, agree with others to deceive.

Conclusion:

Hence, it can be inferred that not everyone who is considered a cheater is not timid.

Proving in FOL

Example 1

- Declaring predicates
 - deceiver(x): x is a person who deceives others
 - cheater(x): x is a cheater
 - agree(x,y): x agrees with y
 - timid(x): x is a timid person
- Knowledge representation
 - 1. $deceiver(x) \rightarrow cheater(x)$
 - 2. $agree(x,y) \land cheater(y) \rightarrow cheater(x)$
 - 3. $\exists x \ (timid(x) \land \exists y (agree(x,y) \land deceiver(y)))$
 - Conclusion ¬(∀x cheater(x) → ¬timid(x))

Proving in FOL

Example 1

- Add \neg (Conclusion) is $(\forall x \ cheater(x) \rightarrow \neg timid(x))$
- Standardize and separate
 - 1. ¬deceiver(x) v cheater(x)
 - 2. ¬agree(x,y) v ¬cheater(y) v cheater(x)
 - 3. timid(A)
 - 4. agree(A,B)
 - 5. deceiver(B)
 - 6. ¬cheater(x) v ¬timid(x)
- Apply the solution method

Proving in FOL

Example 2

Given the following knowledge base

- 1. Hung **likes** all kinds of **food.**
- 2. Apples are food
- 3. Chicken is food
- 4. Anything that people eat and don't get harmed is food
- 5. Phong ate peanuts and still lived.
- 6. Lan eats whatever Phong eats.

Use the solution method to:

Prove that Hung likes peanuts

Proving in FOL

Example 3

Knowledge base:

- 1. All dogs bark at night.
- 2. Anyone who has a cat has no mice in their house.
- 3. Anyone who has trouble sleeping does not keep any animal that barks at night.
- 4. Mrs. Binh has either a cat or a dog.

Conclusion:

If Mrs. Binh has trouble sleeping, then there are no mice in her house.

Proving in FOL

Example 4

Given the following statements:

- John owns a dog.
- All people who own dogs are animal lovers.
- Animal lovers do not kill animals.

Prove: John does not kill animals.

Proving in FOL Example 5

Given:

- Thuy is a girl.
- An is a boy.
- Girls have longer hair than boys.

Prove: Thuy's hair is longer than An's hair.

Thank you!

You're now ready to explore the exciting world of AI!